

ALKYNES

7.2 STRUCTURE AND PROPERTIES OF ALKYNES

Classification of Alkynes

monosubstituted alkyne (terminal alkyne): R—C≡C—H

disubstituted alkyne (internal alkyne): $R - C \equiv C - R$

Table 11.1 C—C and C—H Bond Lengths and Bond Strengths in Alkynes, Alkenes, and Alkanes

Compound	Bond Length (pm)	Bond Strength (kJ mole ⁻¹)
C≡C—H (ethyne)	105	536
C=C—H (ethene)	109	470
C—H (ethane)	111	422
C≡C (ethyne)	121	820
C=C (ethene)	133	605
C—C (ethane)	154	368

7.2 STRUCTURE AND PROPERTIES OF ALKYNES Hybridization, Bond Length, and Bond Energies in Alkynes

Figure 11.1 Structure and Bonding in Ethyne

(a) Schematic diagram. (b) Sigma bonds in ethyne. (c) Electrostatic potential map. We recall that an sp-hybridized carbon is electron deficient relative to an sp²- or sp³-hybridized carbon. The regions of partial positive charge surrounding the carbon atoms is shown in red. The negative end of the C—H dipole is shown in blue. (d) Space-filling model.

Bonding in ethyne: the carbon-carbon σ bonds are colinear; the π bonds lie above and below, and in front and behind the sigma bonds.

7.2 STRUCTURE AND PROPERTIES OF ALKYNES Physical Properties of Alkynes

Table 7.2 Physical Pro	perties of Alkyne	S
Compound	Boiling Point (°C)	Density (g/cm ³)
1-butyne	8.1	0.678
2-butyne	27	0.091
1-pentyne	40.2	0.690
2-pentyne	56.1	0.711
3-methyl-1-butyne	29	0.666
1-hexyne	71.3	0.716
2-hexyne	84	0.732
3-hexyne	81.5	0.723
4-methyl-1-pentyne	61.1	0.709
4-methyl-2-pentyne	72.0	0.716
3,3-dimethyl-1-butyne	39.5	0.669
1-heptyne	99.7	0.733
2-heptyne	112	0.748
3-heptyne	105.5	0.753
5-methyl-1-hexyne	92	0.727
5-methyl-2-hexyne	102	0.738
2-methyl-3-hexyne	95.2	0.726
4,4-dimethyl-1-pentyne	76.1	0.714
4,4-dimethyl-2-pentyne	82.3	0.718
3-ethyl-1-pentyne	88	0.724

7.3 IUPAC NAMES OF ALKYNES

- 1. The longest continuous chain that contains the triple bond is the parent.
- 2. Give the parent the same stem name as an alkane, but replace *-ane* with *-yne*.
- 3. Number the carbon atoms consecutively from the end of the chain nearer the triple bond. Use the number of the first carbon atom with the triple bond as a prefix separated by a hyphen from the parent name.

4. Alkyl groups are named, and their positions on the chain determined, by the numbering established by rule 3.

$$\begin{array}{c} CH_{3} \\ H_{3} \\ CH_{3} \\ CH_{3}$$

7.3 IUPAC NAMES OF ALKYNES (II)

5. Compounds with multiple triple bonds are diynes, triynes, and so on. Compounds with both double and triple bonds are called *enynes*, <u>not</u> ynenes. Start the numbering of compounds with both double and triple bonds from the end nearer the first multiple bond, regardless of type. When a choice is possible, assign double bonds lower numbers than triple bonds.

$$^{1}_{CH_{2}} = ^{2}_{CH} - ^{3}_{CH_{2}} - ^{4}_{C} = ^{5}_{C} - H$$

This is 1-penten-4-yne, *not* 4=penten-1-yne.

7.4 ACIDITY OF TERMINAL ALKYNES

 $R - C \equiv C - H + B^{*} \implies R - C \equiv C^{*-} + B - H$ (an alkynide ion) $CH_{3} - CH_{3} \qquad CH_{2} = CH_{2} \qquad HC \equiv CH$ $K_{a} \cdot 10^{-50} \qquad K_{a} = 10^{-44} \qquad K_{a} \cdot 10^{-25}$ $H - C \equiv C - H + \overrightarrow{:OH} \implies H - C \equiv C^{*-} + H - OH \qquad K_{eq} = 10^{-9}$ $R - C \equiv C^{*-} + H_{2}O \implies R - C \equiv C - H + HO^{*-}$ weaker acid acid 7.5 HYDROGENATION OF ALKYNES

Figure 7.2 Stability of Alkenes and Alkynes

7.5 HYDROGENATION OF ALKYNES Syn Addition of Hydrogen

Anti Addition of Hydrogen

7.5 HYDROGENATION OF ALKYNES

Mechanism of Anti Addition

7.6 ELECTROPHILIC ADDITION REACTIONS

Addition of Hydrogen Halides

7.6 ELECTROPHILIC ADDITION REACTIONS

Addition of Halogens

7.6 ELECTROPHILIC ADDITION REACTIONS

Hydration of Alkynes

7.7 SYNTHESIS OF ALKYNES

Elimination Reactions of Dihalides

7.6 ELECTROPHILIC ADDITION REACTIONS

Alkylation of Alkynes

